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Abstract 

The conditional distributions of a quartet phase 
derived by Hauptman [Acta Cryst. (1975), A31, 671- 
679, 680-687] and by Giacovazzo [Acta Cryst. (1976), 
A32, 91-99, 100-104] are reconsidered. Quartets esti- 
mated negative by the Hauptman formula are unre- 
liable for small structures. 

Symbols 

N: number of atoms in the primitive unit cell. 
In the formulas, for unequal-atom struc- 
tures, N is replaced by Neq = o'32/or] where 
o-i = Y~j= 1 zj. Zj is the atomic number of the 
j th  atom 

(J~:~h'at-~k'~l'at-~Om with h + k + l + m = O  
R=IEI 

E1 = Eh, E2 -- Ek,  E 3 = El, E4 = E m  
E5 = ~+k,  E6 = ~+, ,  E7 = E H  
ei = R 2 - 1  

GOt = 2RiRjRI/  N 1/2 
B = mR1RERaR4/N 

DI(x) = Ii(x)/Io(x) = ratio of modified Bessel func- 
tions of orders 1 and 0, respectively. 

I. Introduction 

After the pioneering work by Schenk (1973, 1974), it 
was soon understood that reliable estimates of quartet 
invariants could be obtained via the method of the 
joint probability distribution functions. Two formulas 
are today widely used. 
(1) The Hauptman (1975) formula 

P ( q ) ) -  (1/L) exp (-mB cos cI:')Io(Zs)Io(Z6)Io(Z7), 

(1) 
where 

Zs=[G~25+ G345-4- 2GI25G345 cos (~]1/2, 

= [G136-~- Z6 2 2 G246 -1- 2 O136 G246 cos (~] 1/2, 

Z7 [G~37+ = G147-k- 2G237G147 cos (~]1/2. 

Numerical methods are available for calculating: 
(a) the scaling factor L via the condition 
~o P(q~) dq~= 1; (b) the mode q),, of P(q)); (c) the 
mean value (it)., given by 

(/)a = S OP(qb) d (/); 
o 

(d) the variance, V, as given by 

V = S  ( ~  - ~a)mP(~) d(/). 
o 

According to (1), ~,, can in principle lie everywhere 
between 0 and 7r. 

(2) The Giacovazzo (1976, 1980) formula 

P(qb)=[2~Io(G')] -1 exp (G'  cos ~) ,  (2) 

where 

G ' =  B(1 + e5+ 86+ eT)/(1 + Q), 

Q = [(E1/:~2-Jf - E3E4)Es-q-(~'1E3 --~- EmE4)E 6 

A- (8184+ eme3)ev]/mN. 

Equation (2) is avon  Mises function: it is unimodal, 
with q~,, = 0 or 7r according to whether G' is positive 
or negative. 

Heinerman (1977) showed that the numerator of 
(2) (but not the denominator) may be obtained from 
(1) by expanding the Bessel functions Io(Zi) accord- 
ing to 

Iv(Z) = 1 + Z2/4 + . . . -~exp  (Z2/4). 

This result generated the idea that (2) could be con- 
sidered as a less accurate approximation of (1): more 
precisely, Giacovazzo's statement that cos (/) is expec- 
ted to be positive when 

g 2 + g 2 + R 2 > 2 

could be considered as a rough approximation of the 
more complex rule given by (1) [in fact, according 
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Table 1. YONO: basis and cross magnitudes of the 16 quartets (found among the largest R values) for which 
q~,,, > 60 ° according to (1) 

F o r  e a c h  q u a r t e t ,  qO m a n d  qba, as  c a l c u l a t e d  b y  (1) a n d  (2) ,  a r e  g iven .  @, is t h e  t rue  v a l u e  o f  t h e  q u a r t e t  p h a s e .  

F r o m  (1) F r o m  (2) 

R t RE R3 R4 R5 R6 R7 qbra ( q~a ) qb,n ( qba ) qbt 

3.96 2.72 2.45 2.13 2.63 2.45 2.02 88 80 0 41 1 
3.96 2.72 2.36 2.31 2.36 1.57 2.19 107 105 0 40 10 
3.96 2.72 2.36 2.13 2.63 2.11 2.16 88 82 0 41 1 
3.96 2.72 2.15 2.11 2.36 2.14 2.36 84 75 0 41 2 
3.96 2.62 2.45 2.15 2.22 2.45 2.14 92 85 0 40 5 
3.96 2.62 2.44 2.13 2.73 2.46 2.16 81 70 0 41 2 
3.96 2.62 2.36 2.13 2.22 2.36 2.16 88 83 0 40 3 
3.96 2.62 2.36 2.15 2.73 2.36 2.14 81 71 0 41 5 
3.96 2.62 2.13 2.11 2.73 2.02 2.36 73 65 0 42 4 
3.96 2.36 2.13 2.11 2.73 2.16 1.64 81 72 0 41 5 
3.96 2.36 2.21 2.13 3.36 2.63 2.02 73 61 0 40 2 
2.72 2.62 2.45 2.11 2.81 1.07 2.14 77 65 0 37 3 
2.72 2.62 2.44 2.36 2.81 1.35 2.16 73 64 0 36 3 
2.36 2.36 2.18 2.12 1.50 - 1.27 62 62 0 33 12 
2.36 2.36 2.31 2.12 1.44 - 1.27 73 66 0 33 17 
2.36 2.18 2.12 2.11 - 1.13 1.50 62 64 0 33 11 

to (1), the sign of the quartet cosine depends on an 
intricate interrelationship among all the seven mag- 
nitudes R ~ , . . . ,  R7]. However, various tests (not 
described here for brevity) carried out on a consider- 
able number of crystal structures covering a large 
range of structural complexity (from N = 40 to 300) 
and of space groups show that (1) and (2) have nearly 
equivalent accuracies. The problem was reanalysed 
by Giacovazzo (1977). He noted that (1) and (2) were 
obtained by different mathematical techniques: the 
primitive random variables are the reciprocal vectors 
in Hauptman's approach and the atomic positional 
vectors in Giacovazzo's approach. However, the 
different choices of the primitive random variables 
are not responsible for the different mathematical 
forms of (1) and (2), which only depend on the 
different approximations involved in the two 
approaches. 

A more recent analysis of the problem (Giacovazzo, 
Camalli & Spagna, 1989) showed that for N 
sufficiently large the estimates provided by (1) and 
(2) coincide for all the cases of practical interest, 
while differences exist when N is small. Very recently, 
we became interested in the application of quartets 
to powder data. In this we handled a special class of 
crystal structures with 3 <  N < 4 0 .  To define our 
strategy for the phasing process, we made some pre- 
liminary tests to check the relative accuracies of (1) 
and (2). It was a great surprise for us to discover for 
such a class of small structures a systematic lack of 
accuracy for (1) and a satisfactory effectiveness for 
(2). Some details of our tests are given in § 2. In § 3, 
the centrosymmetrical case is taken into account. 

A final aspect deserves to be emphasized. Our pre- 
liminary tests on powder data were aimed at checking 
the usefulness of the quartet invariants in a phasing 
process disturbed by uncertain diffraction moduli 
(because of diffraction-peak overlapping). We are 
here interested in a more basic question, the reliability 

of probabilistic estimates obtained when the diffrac- 
tion magnitudes are certain. Thus, all the tests presen- 
ted here have been performed by using the calculated 
structure factors, in the absence of any experimental 
ambiguity. We anticipate that quartet-invariant esti- 
mates can be very useful when applied to real powder 
data. 

2. The noncentrosymmetric case: tests and applications 

The structure YONO [Christensen, Nielsen, O'Reilly 
& Wroblewski (1992); Y40(OH)9NO3, P21, Z - - 2 ]  
has been used for our tests [Neq-~ 11]. Among the 
largest 70 R values we found 7921 quartet invariants 
having at least two cross magnitudes in the data (this 
last condition will always hold in this paper). 

According to (1), t/,,~ is larger than 60 ° for as many 
as 1124 quartets: the average value of @~ is 82 °, while 
the average of the true values is 34 °. These data suggest 
that a large percentage of positive cosines are wrongly 
estimated as negative by (1). To provide the reader 
with a more detailed analysis we calculated the quar- 
tets among the largest 20 R values only: a total of 
108 quartets were found, 16 of which had q0,~ larger 
than 60 ° . In Table 1, the basis and cross magnitudes 
are given for each of these quartets, together with q0,, 
and q0a, as calculated by (1) and (2), respectively. In 
the last column, the true value @, of qb is shown. In 
Figs. 1 and 2, the distribution (1) is drawn (dashed 
line) for the quartets 2 and 14, respectively; they have 
the maximum (107 ° ) and the minimum (62 ° ) values 
of q0m. In the same figures, (2) is also drawn (solid 
line). The lack of efficiency of (1) is quite evident. In 
contrast, (2) correctly estimates all the cosine signs: 
in particular, the mode is zero for all the quartets, 
the value of q0a is relatively close to zero [qO is 
calculated from the relation cos@~ = D~(G')] and is 
therefore close to qbt. 
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Table 1 suggests that (1) is inefficient when the 
term B is too large (e.g. when N is very small and/or  
when the basis terms are very large). As a numerical 
example, let us suppose that R~ = R2 = R3 = R4 = 2.8, 
R 5 =  R 6 - - - R T = 2 ,  N = 5 .  Since the quartet is the 
difference of three pairs of triplets and these are 
expected to be very close to zero, the quartet should 
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Fig. 1. YONO: distributions (1) (dashed line) and (2) (solid line) 
for the quartet 2 in Table 1. 
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Fig. 2. YONO: distributions (1) (dashed line) and (2) (solid line) 
for the quartet 14 in Table 1. 
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Fig. 3. Distributions (1) (dashed line) and (2) (solid line) for a 
hypothetical quartet (moduli given in the figure). 

Table 2. PBS: positive and negative estimated quartets 

n is the number of  invariants with argument of tanh larger (in 
modulus) than a given argument ARG, nw is the number of  wrong 
estimates. 

Quartets estimated as Quartets estimated as 
positive negative 

From (3) From (4) From (3) From (4) 
ARG n (nw) n (nw) n (nw) n (nw) 

0.0 6456 (42) 8201 (164) 1969 (1687) 224 (64) 
0.4 5345 (12) 8143 (133) 1173 (952) 197 (50) 
1.0 3660 (5) 8096 (128) 478 (263) 125 (23) 
2.0 1889 (0) 7674(104) 109 (86) 52 (0) 
3.2 688 (0) 3874 (51) 15 (13) 22 (0) 
4.2 224 (0) 601 (10) 4 (4) 9 (0) 
6.0 - 143 (0) - 2 (0) 

also be close to zero. However, according to (1), 
B = 24.59: thus the effect of the exponential term [viz 
exp (-49.18 cos(/))] is not compensated by the prod- 
uct of the three Io functions. As a consequence, the 
quartet is estimated as negative by (1). The distribu- 
tions (1) and (2) are shown in Fig. 3; while according 
to (2) ~a and @,, are 30 and 0 °, respectively, accord- 
ing to (1) they are 131 and 132 °. 

3. The centrosymmetric case 

Two probabilistic formulas are widely used for 
estimating the quartet signs in centrosymmetric space 
groups: (a) (Green & Hauptman, 1976; Hauptman 
& Green, 1976) 

P±~--(1/L) e x p ( ~  B) cosh (RsZ~) 

x cosh (R6Z~) c o s h  (R7Z~: ) ,  (3) 

where 

L = P + + P  -, Z s=(R~R2±RaR4) /N  1/2, 

Z~ = ( R~R3 + R2R4)/ N ~/2, 

Z~ = ( R]R4 ± R2R3)/ N ~/2. 

(b) (Giacovazzo, 1975, 1980) 

P+=½+½tanh(G'/2). (4) 

To have a common statistical parameter for our tests, 
we have transformed the value of P+ obtained by (3) 
in an argument G" of the function tanh, according 
to G"=  2 tanh -1 (2P ÷ - 1). Equations (3) and (4) have 
been tested on three small structures. 

PBS [Christensen, Hazell, Hewat & O'Reilly 
( 1 9 9 1 ) ;  P b S 2 0 3 ,  Pbca, Z = 8; N e q =  10]. In Table 2, 
the quartet relationships have been ranked according 
to the argument (ARG) of the hyperbolic tangent: n 
is the number of quartets with G' or G" larger (in 
modulus) than ARG, nw is the number of wrongly 
estimated quartets. It should be observed that: 

(a) quartets estimated positive by (3) or (4) are 
reliable [(3) seems a little more efficient than (4)]; 
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Table 3. H O B A :  positive and negative es t imated 
quartets 

n is the number of  invariants with argument of tanh larger (in 
modulus) than a given argument ARG, nw is the number of  wrong 
estimates. 

ARG 

o.0 
0.4 
1.o 
2.0 
3.2 
4.2 
6.0 

Quartets estimated as Quartets estimated as 
positive negative 

From (3) From (4) From (3) From (4) 
n (n~) n (n~) n (n,,,) n (nw) 
8572 (0) 8756 (0) 198 (198) 14 (14) 
8284 (0) 8748 (0) 80 (80) 9 (9) 
7300 (0) 8734 (0) 19 (19) 6 (6) 
5240(0) 8450(0) 1 (1) 
2590(0) 6070(0) 1 (1) 
832 (0) 1194 (0) 

13 (0) 

Neq = 72). 234 quartets are estimated negative by (3): 
the percentage of correctly estimated quartets Pc is 
0.88. When (4) is applied in the same conditions, only 
149 quartets are estimated negative with Pc = 0.95. 

NEWQB [Grigg, Kemp, Sheldrick & Trotter 
( 1 9 7 8 ) ;  C 2 4 H E o N 2 0 5 ,  P1, Z = 4; Neq : 124]. 343 quar- 
tets are estimated negative by (3), with Pc = 0.64. If 
(4) is applied, 256 quartets are estimated negative 
with Pc -- 0.69. 

Q U I N O L  [Wallwork & Powell (1980); C 6 H 6 0 2 ,  

R3, Z =  54; Neq= 143]. 3165 quartets are estimated 
negative by (3), with Pc--0.63. When (4) is applied 
under the same conditions, 3003 quartets are esti- 
mated negative, with Pc = 0.66. 

Table 4. E R V O :  positive and  negative es t imated 
quartets 

n is the number of  invariants with argument of tanh larger (in 
modulus) than a given argument ARG, nw is the number of wrong 
estimates. 

ARG 
0.0 
0.4 
1.0 
2.0 
3.2 
4.2 
6.0 

Quartets estimated as Quartets estimated as 
positive negative 

From (3) From (4) From (3) From (4) 
n (nw) n (nw) n (nw) n (nw) 
9014 (0) 9796 (0) 782 (782) 0 (0) 
8354 (0) 9795 (0) 461 (461) 
7018 (0) 9792 (0) 173 (173) 
3573 (0) 9792 (0) 34 (34) 
313(0) 9791(0) 5 (5) 

0(0) 8572(0) 1 (1) 
124 (0) 

(b) distribution (3) proves completely unreliable 
for quartets estimated to be negative: a too high 
percentage of quartets are estimated negative when 
they are in fact positive. In contrast, (4) preserves a 
high degree of efficiency. 

HOBA [Christensen & O'Reilly (1991); 
noBa2Cu2 .9oO6.85 ,  P m m m ,  Z = 1; Neq----- 5].  8756 quar- 
tets are estimated positive (all correct) and 14 quartets 
are estimated negative (all incorrectly estimated) by 
(4) (see Table 3). Formula (3) estimates as positive 
8572 quartets (all the estimates are correct) but as 
many as 198 quartets are estimated negative while 
they are all positive. 

ERVO [Kockelmann, Sch~ifer & Will (1991); 
ErVO4, I 4 1 / a m d ,  Z = 4; Neq~---3]. 9796 quartets were 
found, all of which are positive. 9014 of them are 
correctly estimated positive and 782 are wrongly esti- 
mated negative by application of (3) (see Table 4). 
On the other hand, all the 9796 quartets are correctly 
estimated positive by (4). 

Equation (3) is more accurate for larger structures, 
where its ability in picking up negative quartets is 
comparable with that of (4). However, the tendency 
of (3) to overestimate the number of negative quartets 
is still present. The following are given as examples. 

GRA4 (Crystallography group, University_of York, 
private communication; C30H22N204, P1, Z = 2 ;  

4. Additional applications 

Additional tests have been made to check the useful- 
ness (for very small structures) of the von Mises 
approximation to (1) recently proposed by 
Giacovazzo, Camalli & Spagna (1989). Accordingly, 
expression (2) is retained but G' is replaced by 

G " = B + ( q s - B ) + ( q 6 - B ) + ( q T - B ) ,  (5) 

where qs, q6, q7 satisfy the equations 

Dl(qs) = Dl(G125) D1 (G345), 

D l ( q 6 )  = 91(G136)Dl(G246), 

Ol(q7) = O1(G237) Ol(G147). 

Our tests, not described for brevity, show that the use 
of (5) emphasizes the drawbacks presented by (1). 
Readers are warned not to trust (1) or the von Mises 
parameter (5) for very small structures. 

5. Concluding remarks 

The probabilistic formulas of Hauptman (1975) [(1)] 
and Giacovazzo (1976, 1980) [(2)] have been tested 
on very small structures. While both proved efficient 
in the estimation of positive quartets, Hauptman's 
formula is unreliable for negative quartets. This sys- 
tematic lack of effectiveness suggests that the prob- 
abilistic theory of the quartet invariants is far from 
being satisfactory. Therefore, (1) and (2) can be con- 
sidered as different approximations of a still unknown 
quartet-phase distribution; (2) should not be con- 
sidered as an approximation of (1). 

The authors thank Miss C. Chiarella for technical 
support. 
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Abstract 
X-ray diffraction from crystal surfaces at grazing 
angles gives rise to X-ray standing waves above and 
below the surface. Expressions are derived for the 
fluorescence observed from atoms located on or in a 
crystal as a result of excitation by the grazing-angle 
X-ray standing waves. In addition to the dependence 
of the fluorescence on the position of the atom with 
regard to the crystal plane that is responsible for 
the diffraction, the standing-wave amplitude also 
depends on the distance from the surface. We present 
standing-wave measurements from I on Ge(111) and 
the Ge atoms themselves which illustrate these effects. 

1. Introduction 
The idea of X-ray standing waves was first proposed 
and demonstrated by Batterman (1964, 1969), who 
realized that the interference between incident and 
diffracted beams could be used to excite atoms selec- 
tively in a crystal. The location of impurity atoms in 
or on the crystal is readily determined along the 
reciprocal-lattice vector responsible for the diffrac- 
tion in the two-beam case (Golovchenko, Batterman 
& Brown, 1974). While X-ray standing-wave (XSW) 
measurements have been made in both the Bragg 

* Present address: MSD, Argonne National Laboratory, and 
Department of Materials Science and Engineering, Northwestern 
University, Evanston, IL60028-3100, USA. 

(Golovchenko, Batterman & Brown, 1974) and the 
Laue (Materlik, Frahm & Bedzyk, 1984) geometries, 
their principal utility has been with systems measured 
in the Bragg geometry. 

Concurrently, the grazing-angle-diffraction (GAD) 
geometry has proven to be very useful for the determi- 
nation of lattices on crystal surfaces, particularly the 
two-dimensional lattices that occur in adsorbate 
studies (Marra, Eisenberger & Cho, 1979; Eisenber- 
ger & Marra, 1981). In this geometry, a collimated 
X-ray beam is incident on a crystal surface at a grazing 
angle, usually close to the angle {Pc for total external 
reflection. The X-ray beam diffracts from a reciprocal- 
lattice vector approximately parallel to the crystal 
surface and exits the crystal at a grazing angle. The 
dynamical theory of X-ray diffraction has been 
applied to this geometry (Afanas'ev & Melkonyan, 
1983; Cowan, 1985) and X-ray standing-wave effects 
have been observed (Afanas'ev, Imamov, Maslov & 
Pashaev, 1984; Cowan, Brennan, Jach, Bedzyk & 
Materlik, 1986; Hashizume & Sakata, 1989). X-ray 
standing waves have recently been used for the first 
determination of adsorbate-atom positions in the 
GAD geometry (Jach & Bedzyk, 1990). The purposes 
of this paper are to derive the expressions for the 
X-ray standing-wave fields that occur in GAD in 
terms of the same parameters as XSW in the Bragg 
geometry and to demonstrate their validity over a 
wide range of incidence angles near the critical angle, 
where the penetration of the X-ray beams varies con- 
siderably. 
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